10. Differential equations

Theory

Theory

- Differential equations are equations involving variables (e.g. x, y) and their derivatives $\left(\text{e.g. } \frac{\mathrm{d}y}{\mathrm{d}x}\right)$.
- They can be solved (i.e. finding an equation between x and y only) by integration.
- A differential equation is of **variable separable** form if it can be written as

$$g(y)\frac{\mathrm{d}y}{\mathrm{d}x} = f(x).$$

• Variable separable equations can be solved by proceeding to integrate:

$$\int g(y) \, \mathrm{d}y = \int f(x) \, \mathrm{d}x$$

- Differential equations of the form $\frac{d^2y}{dx^2} = f(x)$ can be solved by integrating twice.
- The general solution refers to all possible solutions of a differential equation. There are infinite number of solutions since the integration constant C can take any value.
- A **particular solution** refers to one solution of a differential equation. Typically a set of values will be given to us to find C in order to obtain a particular solution.

Problem sums: rates of change

Rate of change of
$$x$$
: $\frac{\mathrm{d}x}{\mathrm{d}t}$

 $\frac{\mathrm{d}x}{\mathrm{d}t}$ = rate of increase of x – rate of decrease of x

Second order DE	Removing the modulus
d^2y	$\ln x = t + C$
$\frac{1}{\mathrm{d}x^2} = 2x$	$ x = e^{t+C}$
$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + C$	$ x = Be^t$ where $B = e^C$
$y = \frac{x^3}{3} + Cx + D.$	$x = Ae^t$ where $A = \pm B$

Substitution

Approach

- Step 1: Differentiate given substitution implicitly.
- Step 2: Using the given substitution and the differentials in step 1, replace the old variable (e.g. y) to the new one (e.g. u).
- Step 3: The DE in the new variable should be of separable form. Integrate it.
- Step 4: Substitute back the old variable.

Variable separable form
$$\frac{dy}{dx} = xy^2$$
 $\frac{1}{y^2} \frac{dy}{dx} = x$ $\int \frac{1}{y^2} dy = \int x dx$ General solution: $-\frac{1}{y} = \frac{x^2}{2} + C$.If $y = 1$ when $x = 0$, $C = -1$ Particular solution: $-\frac{1}{y} = \frac{x^2}{2} - 1$.ExampleExampleDifferentiating $u = xy$ implicitly with respect to x , $\frac{du}{dx} = x\frac{dy}{dx} + y$ $u\frac{du}{dx} = 1$ $\frac{du}{dx} = x\frac{dy}{dx} + y$ $u^2 = x + C$ $x^2y\frac{dy}{dx} + xy^2 = 1$ $y\frac{dy}{dx} - y$ $y(\frac{du}{dx} - y) + uy = 1$ Solution: $(xy)^2 = 2x + C'$

Kelvin Soh

https://math-atlas.vercel.app