10 Differential equations

10.1 Introduction and definitions

A differential equation (DE) is a relation between variables (e.g. x, y) and their derivatives (e.g. $\frac{dy}{dx}$ dx). For example, $\frac{dy}{dx}$ dx $= 2x$ is a DE.

A **solution** to a DE is a relation between our variables (e.g. x, y) that satisfy the DE. For example, $y = x^2$ is a solution of $\frac{dy}{dx}$ dx $= 2x$.

The general solution refers to a solution that includes all the possible solutions of a DE. For $\frac{dy}{dx}$ dx $= 2x$, the general solution is $y = x^2 + c$, where c is an arbitrary constant.

A particular solution refers to one specific solution of a DE. For example, for $\frac{dy}{dx}$ dx $y = 2x$, if we are further given that $y = 3$ when $x = 0$, then $y = x^2 + 3$ is the particular solution.

10.2 Verifying solutions

Example 1. Verify that $y = x^3 e^{x^2}$ is a solution of the differential equation x dy dx $= y(3 + 2x^2).$

Solution 1. Differentiating $y = x^3 e^{x^2}$ w.r.t. x (using the product rule),

$$
\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 e^{x^2} + x^3 \left(2x e^{x^2}\right)
$$

Multiplying x on both sides,

$$
x\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^3 e^{x^2} + 2x^2 \left(x^3 e^{x^2}\right)
$$

By observing that $y = x^3 e^{x^2}$, we have

$$
x\frac{\mathrm{d}y}{\mathrm{d}x} = 3y + 2x^2y
$$

$$
= y(3 + 2x^2)
$$

This verifies that $y = x^3 e^{x^2}$ is a solution.

10.3 Solving DEs of the form $\frac{dy}{dx}$ dx $= f(x)$

$$
\frac{dy}{dx} = f(x) \implies y = \int f(x) dx
$$

Example 2. Consider the differential equation $\frac{dy}{dx}$ dx = 1 $\frac{1}{x^2+1}$.

- (a) Find the general solution.
- (b) Find the particular solution, given that $y = 2$ when $x = 0$.

Solution 2.

(a)
$$
\frac{dy}{dx} = \frac{1}{x^2 + 1}
$$

$$
y = \int \frac{1}{x^2 + 1} dx
$$

$$
y = \tan^{-1} x + c
$$

General solution: $y = \tan^{-1} x + c$, where c is an arbitrary constant. \blacksquare

(b) When
$$
x = 0
$$
, $y = 2$
 $2 = \tan^{-1} 0 + c$
 $c = 2$

Particular solution: $y = \tan^{-1} x + 2$. \blacksquare 10.4 Solving DEs of the form $\frac{dy}{dx}$ dx $= f(y)$

$$
\frac{dy}{dx} = f(y) \implies \int \frac{1}{f(y)} dy = \int 1 dx
$$

Example 3. Find the general solution of $\frac{dy}{dx}$ dx $= 1 - 2y.$

Solution 3.
$$
\frac{dy}{dx} = 1 - 2y
$$

$$
\int \frac{1}{1 - 2y} dy = \int 1 dx
$$

$$
\frac{\ln|1 - 2y|}{-2} = x + c', \text{ where } c' \text{ is an arbitrary constant}
$$

General solution: $\ln|1 - 2y| = -2x + c$.

Removal of modulus/absolute value

$$
\ln |f(y)| = g(x) + c \quad \implies \quad f(y) = Ae^{g(x)}
$$

10.5 2nd order DEs of the form $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2} = f(x)$

Example 4. Find the general solution of $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2} = \cos 3x.$

Solution 4.

$$
\frac{d^2y}{dx^2} = \cos 3x
$$
\n
$$
\frac{dy}{dx} = \int \cos 3x \, dx = \frac{\sin 3x}{3} + c
$$
\n
$$
\begin{aligned}\ny &= \int \frac{\sin 3x}{3} + c \, dx \\
&= -\frac{\cos 3x}{9} + cx + d, \\
&= -\frac{\cos 3x}{9} + cx + d,\n\end{aligned}
$$
\nwhere *c*, *d* are arbitrary constants

 $\overline{}$

General solution: $y = -\frac{\cos 3x}{2}$ 9 $+ cx + d$.

10.6 DEs in problem situations

 dx $\frac{d}{dt}$ $=$ rate of increase of $x -$ rate of decrease of x

Example 5. A water tank with V m³ of water inside at time t s is being filled up at a rate of 9 m^3/s . At the same time, there is a leak in the tank such that the volume decreases at a rate proportional to the current volume of water inside.

It is given that the volume of water inside the tank remains constant if $V = 4.5$ m³.

- (a) Show that the volume of water inside the tank can be described by $\mathrm{d}V$ dt $= 9 - 2V.$
- (b) Find V in terms of t , given that the initial volume of water in the $tank$ is 6.75 m³.
- (c) State what happens to the volume of water in the tank eventually.
- (d) Sketch the graph of V against t for the parts relevant to the context of the question.

Solution 5.

(a) Rate of increase of $V:9$ Rate of decrease of $V : kV$ $\mathrm{d}V$ dt $= 9 - kV$. When $V = 4.5$, $\mathrm{d}V$ dt $= 0.$ $0 = 9 - k(4.5) \implies k = 2.$ Hence $\frac{\mathrm{d}V}{\mathrm{d}t}$ dt $= 9 - 2V$.

(b)
\n
$$
\frac{dV}{dt} = 9 - 2V
$$
\n
$$
\int \frac{1}{9 - 2V} dV = \int 1 dt
$$
\n
$$
\frac{\ln|9 - 2V|}{-2} = t + c
$$
\n
$$
|9 - 2V| = e^{-2t - 2c}
$$
\n
$$
9 - 2V = \pm e^{-2c}e^{-2t}
$$
\n
$$
9 - 2V = Ae^{-2t}, \text{ where } c, A \text{ are arbitrary constants}
$$
\nWhen $t = 0, V = 6.75$.\n
$$
9 - 2(6.75) = Ae^{0} \implies A = -\frac{9}{2}
$$
\n
$$
9 - 2V = -\frac{9}{2}e^{-2t}
$$
\n
$$
V = \frac{9}{2} + \frac{9}{4}e^{-2t}.
$$
\n(c) As $t \to \infty$, $e^{-2t} \to 0$, Hence $V \to \frac{9}{2}$

(c) As $t \to \infty$, $e^{-2t} \to 0$. Hence $V \to \frac{9}{2}$.

The volume of water in the tank approaches 4.5 m^3 eventually.

(d) The parts of the graph relevant to the context of the question are when $t > 0, V > 0.$

Credits: graph created with Desmos: www.desmos.com/calculator/pg4oo6j5yn

Kelvin Soh math-atlas.vercel.app Page 5

 $\qquad \qquad \blacksquare$

 \blacksquare

10.7 Solving DEs by substitution

- Step 1: Differentiate the given substitution implicitly. (e.g. Find $\frac{dz}{dt}$ dx in terms of $\frac{dy}{dx}$ dx $, x, y \text{ and } z)$
- Step 2: Replace the old variables and derivatives in the original DE. (e.g. Replace $\frac{dy}{dx}$ dx and y with $\frac{dz}{dx}$ dx and z using the substitution)
- Step 3: Solve the new DE (which should be simpler). (e.g. Find a relation between z and x by integration)
- Step 4: Replace the new variable back with the original one. (e.g. Replace z to find a solution involving just x and y)

Example 6. Use the substitution $y = zx^2$ to find the general solution $\int x$ dy dx $= 2y - 1.$

Solution 6. Differentiating $y = zx^2$ implicitly w.r.t. x (by product rule),

$$
\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}x}x^2 + 2zx\tag{1}
$$

Substituting (1) and $y = zx^2$ into x dy dx $= 2y - 1,$

$$
x\left(\frac{dz}{dx}x^2 + 2zx\right) = 2zx^2 - 1
$$

$$
\frac{dz}{dx} = -\frac{1}{x^3}
$$

$$
z = \int -\frac{1}{x^3} dx = \frac{1}{2x^2} + c
$$

Substituting $z =$ \hat{y} $rac{9}{x^2}$ \hat{y} $\frac{9}{x^2} =$ 1 $\frac{1}{x^2} + c.$

General solution: $y =$ 1 2 $+ cx^2$.