21 Permutations and combinations

Summary of techniques

1. The multiplication principle:

By breaking an event up into **steps** with m ways for step 1, followed by n ways for step 2, there are $m \times n$ ways for the event to occur.

2. The addition principle:

By breaking an event up into **cases** with either case 1 (m ways) or case 2 (n ways), there are $\boxed{m+n}$ ways for the event to occur.

3. Complements:

n(A) = n(total) - n(A')

4. Permutation (line):

There are n! ways to **rearrange** n unique objects in a **line**.

5. Permutation (circle):

There are |(n-1)!| ways to rearrange *n* unique objects in a **circle**.

6. Permutation (identical objects):

There are $\boxed{\frac{n!}{r_1!r_2!\cdots r_k!}}$ ways to rearrange *n* objects in a line, of which r_1 objects of type 1 are **identical**, r_2 of type 2 are identical, etc. For a circle, there are $\boxed{\frac{(n-1)!}{r_1!r_2!\cdots r_k!}}$ ways.

7. Combination:

There are $\binom{n}{r}$ ways to **choose** r unique objects out of n, where the objects are **unordered**.

For an **ordered** selection, there are $\binom{n}{r} \times r!$ ways.

- 8. Grouping: (A,B) (C) (D) (E) $5! \times 2!$
- 9. Slotting: O O O E 3! × $\binom{4}{2}$ × 2!
- 10. Alternating: MFMFMF or FMFMFM. $3! \times 2 \times 3!$

21.1 The multiplication principle

Example 1 (A: forming a number with repetition).

How many ways are there to form a five-digit number satisfying the following conditions using only the numbers from 1,2,3,4,5,6,7. Repetitions are allowed.

- (a) No restrictions.
- (b) The number must be greater than 30,000.
- (c) The number must be odd.
- (d) The number must be greater than 30,000 and odd.

Solution 1.

- (a) Required number of ways $= 7 \times 7 \times 7 \times 7 \times 7 = 7^5 = 16,807.$
- (b) Required number of ways $= 5 \times 7 \times 7 \times 7 \times 7 = 5 \times 7^4 = 12,005.$
- (c) Required number of ways $= 4 \times 7 \times 7 \times 7 \times 7 \times 7 = 4 \times 7^4 = 9,604.$
- (d) Required number of ways = $5 \times 4 \times 7 \times 7 \times 7 = 5 \times 4 \times 7^3 = 6,860$.

21.2 Permutations: rearranging objects

Example 1 (B: forming a number by rearranging).

How many ways are there to rearrange the five digits 1, 2, 3, 4, 5 to form a five-digit number satisfying the following conditions. Repetitions are **not** allowed.

- (a) No restrictions.
- (b) The number must be greater than 20,000.
- (c) The number must be odd.
- (d) The number must be greater than 20,000 and odd.

Solution 1.

(a) We rearrange the 5 digits to get 5! = 120 ways.

- (b) Required number of ways $= 4 \times 4! = 96$.
- (c) Required number of ways $= 3 \times 4! = 72$.
- (d) Case 1: Start with an odd number (3 or 5). Number of ways $= 2 \times 2 \times 3! = 24$. Case 2: Start with an even number (2 or 4). Number of ways $= 2 \times 3 \times 3! = 36$. Required number of ways = 24 + 36 = 60.

21.4 Combinations: choosing objects

Example 1 (C: forming a number by choosing).

How many ways are there to use the digits from 1, 2, 3, 4, 5, 6, 7 to form a five-digit number satisfying the following conditions. Repetitions are **not** allowed.

- (a) No restrictions.
- (b) The number must be greater than 30,000.
- (c) The number must be odd.
- (d) The number must be greater than 30,000 and odd.

Solution 1.

- (a) Number of ways $=\binom{7}{5} \times 5! = 2520.$
- (b) Number of ways $= 5 \times {6 \choose 4} \times 4! = 1800.$
- (c) Number of ways $= 4 \times {\binom{6}{4}} \times 4! = 1440.$
- (d) Case 1: Start with an odd number (3, 5 or 7). Number of ways $= 3 \times 3 \times {5 \choose 3} \times 3! = 540$. Case 2: Start with an even number (4 or 6). Number of ways $= 2 \times 4 \times {5 \choose 3} \times 3! = 480$. Required number of ways = 540 + 480 = 1020.

21.5 Complements

Example 2 (forming groups).

A group of students is to be chosen to represent three schools, A, B and C. The group is to consist of 10 students, and is chosen from a set of 15 students consisting of 2 from A, 4 from B, and 9 from C.

Find the number of ways in which the group can be chosen if it includes

- (a) 1 student from A, 3 from B and 6 from C,
- (b) students from B and C only,.
- (c) at least 8 students from C,
- (d) at least 1 student from each school.

Solution 2.

Topic 21

(a) Required number of ways
$$= \begin{pmatrix} 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 4 \\ 3 \end{pmatrix} \times \begin{pmatrix} 9 \\ 6 \end{pmatrix} = 672.$$

- (b) We only consider the 4 + 9 = 13 students from *B* and *C*. Required number of ways $= \begin{pmatrix} 13\\10 \end{pmatrix} = 286.$
- (c) Case 1: exactly 8 students from C, 2 from A and B. Case 2: exactly 9 students from C, 1 from A and B. Required number of ways = $\binom{9}{8} \times \binom{6}{2} + \binom{9}{9} \times \binom{6}{1} = 135 + 6 = 141.$
- (d) We consider the complement, which involves *some* school not being represented.

Complement case 1: A not represented. Number of ways $= \begin{pmatrix} 13 \\ 10 \end{pmatrix} = 286$. Complement case 2: B not represented. Number of ways $= \begin{pmatrix} 11 \\ 10 \end{pmatrix} = 11$. Total number of ways with no restrictions $= \begin{pmatrix} 15 \\ 10 \end{pmatrix}$. Required number of ways $= \begin{pmatrix} 15 \\ 10 \end{pmatrix} - (286 + 11) = 2706$.

2021

21.6 Grouping, slotting and alternating

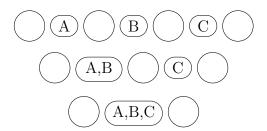
Slotting vs complement

Let us consider a case of three objects A,B,C out of six A,B,C,D,E,F.

To have A,B,C separated/not next to one another, we use the slotting method to get $3! \times \binom{4}{3} \times 3! = 144$ ways, which is illustrated by the first figure below.

To have A,B,C all together, we use the grouping method to get $4! \times 3!$ ways. This is illustrated by the third figure below.

To have A,B,C is **not all together** we use the complement method to get $6! - (4! \times 3!) = 576$ ways. This is illustrated by the first and second figures.



Example 3 (A: rearranging people (in a line)).

A group of 6 people consists of 3 married couples. Find the number of different possible orders for the group to stand in a line if

- (a) there are no restrictions,
- (b) each married man stands next to his wife,
- (c) the men and women alternate,
- (d) each married man stands next to his wife and the men and women alternate.

Solution 3.

- (a) Required number of ways 6! = 720.
- (b) Required number of ways $3! \times 2! \times 2! \times 2! = 48$.
- (c) Required number of ways $= 3! \times 2 \times 3! = 72$.
- (d) Required number of ways $3! \times 2 = 12$.

21.7 Rearranging objects in a circle

Example 3 (B: rearranging people (in a circle)).

A group of 6 people consists of 3 married couples. Find the number of different possible orders for the group to stand in a circle if

- (a) there are no restrictions,
- (b) each married man stands next to his wife,
- (c) the men and women alternate,
- (d) each married man stands next to his wife and the men and women alternate.

Solution 3.

- (a) Required number of ways (6-1)! = 120.
- (b) Required number of ways $(3-1)! \times 2! \times 2! \times 2! = 16$.
- (c) Required number of ways = $(3-1)! \times 1 \times 3! = 12$.
- (d) Required number of ways $(3-1)! \times 2 = 4$.

21.8 Rearranging identical objects

Example 4 (A: rearranging identical objects).

Find the number of ways in which the letters of the word SEQUENCE can be arranged if

- (a) there are no restrictions,
- (b) S and Q must not be next to one another,
- (c) between any two Es there must be at least 2 other letters.

Solution 4.

- (a) Since P is repeated three times, required number of ways $=\frac{8!}{3!}=6720$.
- (b) Using the complement, required number of ways $= 6720 \frac{7! \times 2!}{3!} = 5040.$
- (c) Case 1: $\Box E \Box E \Box E$ Case 2: $E \Box E \Box E \Box$ Case 3: $E \Box \Box E \Box E$ Case 4: $E \Box \Box E \Box \Box E$

Number of ways for each case = 5! (rearrange the remaining five letters) Required number of ways = $5! \times 4 = 480$.

2021

21.9 Choosing identical objects

Example 4 (B: choosing identical objects).

A "codeword" is to be formed using the letters of COMPOSITION. Find the number of possible "codeword"s that are made up of

- (a) 3 letters,
- (b) 4 letters.

Solution 4.

Topic 21

(a) Case 1: no repeats $(\alpha\beta\gamma)$: $\binom{8}{3} \times 3! = 336$ Case 2: repeats twice $(\alpha\alpha\beta)$: $\binom{2}{1} \times \binom{7}{1} \times \frac{3!}{2!} = 42$ Case 3: repeats thrice $(\alpha\alpha\alpha)$: 1

Required number of ways 336 + 42 + 1 = 379.

(b) Case 1: no repeats $(\alpha\beta\gamma\delta)$: $\binom{8}{4} \times 4! = 1680$ Case 2: one letter repeats twice $(\alpha\alpha\beta\gamma)$: $\binom{2}{1} \times \binom{7}{2} \times \frac{4!}{2!} = 504$ Case 3: two letters repeats twice $(\alpha\alpha\beta\beta)$: $\binom{2}{2} \times \frac{4!}{2!2!} = 6$ Case 4: repeats thrice $(\alpha\alpha\alpha\beta)$: $1 \times \binom{7}{1} \times \frac{4!}{3!} = 28$ Required number of ways 1680 + 504 + 6 + 28 = 2218.