Maclaurin
Trigonometry
Calculus
Stats
Others
Display mode for long formulas:
Multiline
Shrink
Scroll

Maclaurin Expansion:

f(x)=f(0)+xf(0)+x22!f(0)++xnn!f(n)(0)+\begin{align*} f(x) = &f(0) + xf'(0) + \frac{x^2}{2!}f''(0) \\ &+ \ldots + \frac{x^n}{n!}f^{(n)}(0) + \ldots \end{align*}
(1+x)n=1+nx+n(n1)2!x2++n(n1)(nr+1)r!xr+\begin{align*} (1&+x)^n = \\ &1 + nx + \frac{n(n-1)}{2!}x^2 + \ldots \\ &+ \frac{n(n-1)\ldots(n-r+1)}{r!}x^r + \ldots \end{align*}
(x<1)\Big ( |x| < 1 \Big )
ex=1+x+x22!+x33!++xrr!+\mathrm{e}^x = 1 + x + \frac{x^2}{2!}+ \frac{x^3}{3!} + \ldots + \frac{x^{r} }{r!} + \ldots
(all x)(\textrm{all } x)
sinx=xx33!+x55!+(1)rx2r+1(2r+1)!+\begin{align*} \sin x = x &- \frac{x^3}{3!}+ \frac{x^5}{5!} - \ldots \\ &+ \frac{(-1)^r x^{2r+1} }{(2r+1)!} + \ldots \end{align*}
(all x)(\textrm{all } x)
cosx=1x22!+x44!+(1)rx2r(2r)!+\begin{align*} \cos x = 1 &- \frac{x^2}{2!}+ \frac{x^4}{4!} -\ldots \\ &+ \frac{(-1)^{r} x^{2r} }{(2r)!} + \ldots \end{align*}
(all x)(\textrm{all } x)
ln(1+x)=xx22+x33+(1)r+1xrr+\begin{align*} \ln (1+x) = x &- \frac{x^2}{2} + \frac{x^3}{3} - \ldots \\ &+ \frac{(-1)^{r+1} x^{r} }{r} + \ldots \end{align*}
(1<x1)(-1 < x \leq 1)
arrow_back arrow_forward