1: Complex numbers: extensions
Extensions
Natural numbers, N={0,1,2,…}
Counting. Addition, multiplication is well-defined.
Integers, Z={0,±1,±2,…}
Subtraction is well-defined.
Rational numbers, Q={ba:a,b∈Z,b=0}
Division is well-defined.
Real numbers, R
π,e,x where x≥0.
Complex numbers, C
‘‘i=−1"
z=a+bi, where a,b∈R
Real and imaginary parts
z=x+yi
Re(z)=x,Im(z)=y
Powers of i
i2=−1
Addition/subtraction
(1+2i)−(3−5i)=−2+7i
Multiplication
(2+i)(3+4i)=6+8i+3i+4i2=2+11i
Conjugation
If z=x+yi, the complex conjugate, z∗, is given by z∗=x−yi.
z+z∗=2x=2Re(z)
z−z∗=2yi=2Im(z)i
zz∗=x2+y2=∣z∣2
Division
3−4i2+i=3−4i2+i×3+4i3+4i=252+11i
Example 1: linear equation
Solve the equation (2+3i)z+8+2i=1−i.
(2+3i)zz=−7−3i=2+3i−7−3i=2+3i−7−3i×2−3i2−3i=13−23+15i
Example 2: quadratic equation
Solve the equation 2z2−2z+5=0.
z=2a−b±b2−4ac=42±4−40=42±−36=42±6i=21±3i
Example 3: comparing real and imaginary parts
Solve the equation −18iz+zz∗=−56−90i.
Let z=x+yi
−18i(x+yi)+(x+yi)(x−yi)=−56−90i
−18xi+18y+x2+y2=−56−90i
By comparing imaginary parts: −18x=−90.
Hence x=5.
By comparing real parts: 18y+x2+y2=−56.
y2+18y+81=0
(y+9)2=0
y=−9
Hence z=5−9i
Factor theorem
If z=α is a root of a polynomial f(z), (i.e.f(α)=0) then (z−α) is a factor of f(z).
Fundamental theorem of algebra
The polynomial equation azn+bzn−1+…=0 has n complex roots (including multiplicity).
Conjugate root theorem
If z=a+bi is a root of the polynomial equation P(z)=0 with real coefficients, then the complex conjugate z∗=a−bi is also a root.
Example 4: conjugate root theorem
It is given that 1+3i is a root of 2z3−z2+14z+30=0. Solve the equation.
Since all the coefficients are real, 1−3i is also a root.
(z−1+3i), (z−1−3i) are factors of the cubic polynomial.
2z3−z2+14z+30=(z−1+3i)(z−1−3i)(az+b)
2z3−z2+14z+30=(z2−2z+10)(az+b)
By comparing coefficients (or by long division): a=2,b=3.
Hence (z−1−3i)(z−1+3i)(2z+3)=0
z=1+3i,z=1−3i or z=−1.5.
Convert cartesian to polar form
r=x2+y2
tanθ=xy
α=tan−1∣∣xy∣∣
θ=⎩⎨⎧απ−α−(π−α)−αif x>0,y>0if x<0,y>0if x<0,y<0if x>0,y<0
Convert polar to cartesian form
x=rcosθ
y=rsinθ
Cartesian form
z=x+yi
Polar/trigo form
z=r(cosθ+isinθ)
Polar/exp form
z=reiθ
Example 5: conversion
zrθz=−1−i=12+12=−(π−4π)=2e−i43π
z=2ei32π=2(cos32π+isin32π)=−1+3i
Exponential form
(r1eiθ1)(r2eiθ2)r2eiθ2r1eiθ1(reiθ)n(reiθ)∗=r1r2ei(θ1+θ2)=r2r1ei(θ1−θ2)=rnei(nθ)=rei(−θ)
Modulus
∣wz∣∣∣zw∣∣∣zn∣∣z∗∣=∣w∣∣z∣=∣z∣∣w∣=∣z∣n=∣z∣
Argument
arg(wz)arg(zw)arg(zn)arg(z∗)=arg(w)+arg(z)=arg(w)−arg(z)=narg(z)=−arg(z)
Principal values
We typically leave our arguments in the range −π<θ≤π.
Values outside of this range can be converted by adding/subtracting 2kπ where k∈Z.
Example 6: polar form arithmetic
Evaluate (e3πi(e−12πi)7e−65πi)∗
z=(e3πie−127πie−65πi)∗=(e3πie−1217πi)∗=(e−1221πi)∗=e47πi=e−4πi
Condition | Cartesian form, x+yi | Polar form, reiθ |
---|---|---|
Real | y=0 | θ=kπ,k∈Z |
Real and positive | y=0,x>0 | θ=2kπ,k∈Z |
Real and negative | y=0,x<0 | θ=π+2kπ,k∈Z |
Purely imaginary | x=0 | θ=2π+kπ,k∈Z |
Example 7: purely imaginary
Find the three smallest positive integers n such that (e−12πi)n is purely imaginary
−12nπ=2π+kπ
n=−6−12k
Smallest n=6,18,24 (when k=−1,−2,−3.)
Example 8: exam-style question
The complex number z is given by z=3+bi, where b is a real number.
(a) Find the possible values of b if z∗z2 is real.
For the rest of the question, it is further given that b>0.
(b) Find the smallest integer value of n such that ∣zn∣>1000.
(c) For the value of n found in (b), find the values of ∣zn∣ and arg(zn), where −π<aarg(zn)≤π.
(d) On a single Argand diagram mark out the points A,B,C,D and E representing the complex numbers z, z∗z2, z∗, z18 and 6z2 respectively.
We first evaluate z∗z2 in terms of b
z∗z2=3−bi(3+bi)2=3−bi9−b2+6bi⋅3+bi3+bi=9+b23(9−b2)−6b2+(18b+(9−b2)b)i
Since z∗z2 is real,
18b+(9−b2)b=0
b(27−b2)=0
b=0,b=±33
b=33 since b>0
∣zn∣∣∣3+33i∣∣n(32+(33)2)nnln6n>1000>1000>1000>ln1000>3.8553
Smallest integer value of n=4
∣zn∣=64=1296
arg(z)=tan−1(333)=3π
arg(zn)=4arg(z)≡34π−2π=−32π
z=6ei3π,z∗z2=6e−i3π36ei32π=6eiπ,z∗=6e−i3π,
z18=6ei3π18=3e−i3π,6z2=636ei32π=6ei32π
Conjugate formulas
z+z∗=2x=2rcosθ
z−z∗=2yi=2risinθ
The half-angle 'trick'
eiθ+1=ei2θei2θ+ei2θe−i2θ=ei2θ(ei2θ+e−i2θ)=ei2θ(2cos2θ)=(2cos2θ)ei2θ
eiθ−1=ei2θei2θ−ei2θe−i2θ=ei2θ(ei2θ−e−i2θ)=ei2θ(2isin2θ)=ei2θ(2ei2πsin2θ)=(2sin2θ)ei(2π+2θ)
Notes for printing (pdf):